Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Key Questions to Ask When Ordering metal stamping clips

Author: Geym

Jun. 17, 2024

103 0 0

Tags: Mechanical Parts & Fabrication Services

UNDERSTANDING SHEET METAL STAMPING

Sheet Metal Stamping is a low-cost high-speed manufacturing process that produces a high volume of identical metal components, which has contributed importantly to many industrial applications such as vehicles, equipment, electronics, appliances, tools, and so much more. For example, sheet Metal Stamping provides a large number of wholesale machine parts for Mechanical Industry.

View Details

At AM Industries Vietnam, our experts can produce highly detailed custom sheet metal stampings and components that meet all customer design specifications. We serve customers across all industries and deliver short- to medium-run metal stampings and sheet metal prototyping for parts and components of all sizes and shapes.

To learn more about our precision metal stampings and custom steel fabrication capabilities, speak with an expert or give us an at , and we&#;ll gladly answer your specific questions.

What is Sheet Metal Stamping?

Sheet Metal stamping is a cold-forming process that uses dies and stamping pressing machines to shape sheet metal into various forms. Pieces of flat sheet metal typically referred to as blanks, are fed into a sheet metal stamping press that uses a tool and dies surface to transform the metal into a new shape. The material is placed to be stamped between die sections, where the use of pressure will form and shear the material into the desired final shape for the product or component.

Stamping operations are suitable for both short or long production runs, and be conducted with other metal forming operations, and may consist of one or more of a series of more specific processes or techniques that we will mention below.

With stamping presses built to handle capacities up to 440 tons and precision stamping dies and tooling that we make in-house, we can create parts as thin as 0.005&#; while maintaining tolerances that often exceed industry standards.

 

Basic techniques of Sheet Metal Stamping

Metal stamping machines may do more than just stamping; they can cast, punch, cut, and shape metal sheets. Machines can be programmed or computer numerically controlled (CNC) to offer high precision and repeatability for each stamped piece. Electrical discharge machining (EDM) and computer-aided design (CAD) programs ensure accuracy

Blanking

Blanking is a steel manufacturing process in which a flat, geometric shape (or &#;blank&#;) is created by feeding a coil of sheet metal into a press and die. The blank is punched out from a large metal sheet in this process. Here&#;s a graphic representation of the process:

Piercing

If a part requires slots, holes, or other cutouts, piercing can be employed. Piercing, which can be performed simultaneously with blanking, punches the requisite shapes out of the metal sheet.

Punching

CNC punching is an important option for generating sheet metal blanks. Punching is an inherently faster operation that lends itself to metal fabrications that have many similar features or where there is a higher volume of parts per run.

Embossing

Metal embossing is used to impart a design upon metal sheets. The metal is pushed with an embossing tool or stylus to create a raised effect on the opposite side. By placing the metal sheet on a rubber or foam pad, the positive impression has a smooth surface that will shine or can take pigment.

Bending

Bending refers to the general technique of forming metal into desired shapes such as L, U, or V-shaped profiles. The bending process for metal results in a plastic deformation that stresses above the yield point but below the tensile strength. Bending typically occurs around a single axis.

When you are designing the bends into your stamping metal part, it is important to allow for enough material &#; make sure to design your part and its blank so that there is enough material to perform the bend. Some important factors to remember:

  • If a bend is made too close to the hole, it can become deformed.
  • Notches and tabs and slots should be designed with widths that are at least 1.5x the thickness of the material. If made any smaller, they can be difficult to create due to the force exerted on punches, causing them to break.
  • Every corner in your blank design should have a radius that is at least half of the material thickness.
  • To minimize instances and severity of burrs, avoid sharp corners and complex cutouts when possible. When such factors cannot be avoided, be sure to note burr direction in your design so they can be considered during stamping

Coining

Coining is a bending technique wherein the workpiece is stamped while placed between a die and the punch or press. This action causes the punch tip to penetrate the metal and results in accurate, repeatable bends. The deep penetration also relieves internal stresses in the metal workpiece, resulting in no spring-back effects.

Flanging

Flanging is the process of introducing a flare or flange onto a metal workpiece through the use of dies, presses, or specialized flanging machinery.

 

Custom Sheet Metal Stampings Material Options

We work with a wide range of custom materials for your projects. If you don&#;t see your preferred material option listed below, contact us to discuss your project&#;s specific requirements.

  • Carbon Steel
  • Cold Rolled Steel
  • Hot Rolled Steel
  • Galvanized Steel
  • Stainless Steel
  • Aluminum
  • Beryllium Copper
  • Brass

 

Custom Sheet Metal Stamping

Our Custom Sheet Metal Stamping service provides metal forming processes that apply custom tooling and techniques to produce parts specified by the customer. We could offer a wide range of industrial and application parts and components that employ custom stamping processes to meet high-volume production needs and ensure all parts meet exact specifications.

 

Custom Sheet Metal Stamping Projects

Our engineers can work on a wide range of sheet metal part projects for clients across various industries. To better illustrate the versatility of custom stamped metal parts, we&#;ve outlined a few recent projects completed by AM&#;s engineers below.

Custom Stamped Part for mounting brackets in the automobile industry

An American client in the automobile industry approached AM to make their custom metal stamps with special requirements for their vehicle-specific kits.

They needed custom stainless steel brackets with no sharp edges at the final products and were having trouble finding a supplier who would provide a high-quality design at an affordable price within a reasonable timeline.

To meet the client&#;s unique request for precise thickness and the complex design requirements, we used a material blanking and bending technique that allowed us to create a smooth surface and exact shape as designed, limiting costs and reducing lead times.

 

Stamped Cable Tray for a Wiring and Cable Application

In another instance, we were asked to remake an existing electrical cable tray; our client was looking for a higher-quality product at a lower price with shorter lead times.

The design was not highly complex, but this application includes a number of small parts, therefore it inherently presented strict size limitations. The manufacturing process was complicated and expensive, as some of the client&#;s jobs required a fully completed powder coating and others did not.

Working with a sample tray, our team at AM was able to reverse engineer the part and its tool. From here, we designed a new stamping die set that allows us to manufacture the parts easier and lower cost.

See more our case studies here: https://aminds.com/case-studies/

 

Types of Stamping Operations

 

Progressive die stamping

Progressive die stamping uses a type of tooling called a progressive die, which contains multiple stamping stations to carry out simultaneous operations on a sheet metal strip. By combining all the necessary tools into one die set, progressive die stamping is a great solution for high-volume production runs.

Transfer Die Stamping

Transfer die stamping is similar to progressive die stamping, but the part is separated from the metal trip early on in the process and is transferred from one stamping station to the next by another mechanical transport system, such as a conveyor belt. This process is usually used on larger parts that may need to be transferred to different presses.

Four-Slide Stamping

Four-slide stamping is also called multi-slide or four-way stamping. This technique is best-suited for crafting complex components that have numerous bends or twists. It uses four sliding tools, instead of one vertical slide, to shape the workpiece through multiple deformations. Two slides, or rams, strike the workpiece horizontally to shape it, and no dies are used. Multi-slide stamping can also have more than four moving slides.

Four-slide stamping is a very versatile type of stamping, as different tools can be attached to each slide. It also has a relatively low cost, and production is fast.

Fine Blanking

Fine blanking, also known as fine-edge blanking, is valuable for providing high accuracy and smooth edges. Usually done on a hydraulic or mechanical press, or by a combination of the two, fine blanking operations consist of three distinct movements:

  • Clamping of the workpiece or work material in place
  • Performance of the blanking operation
  • Ejection of the finished part

Fine blanking presses operate at higher pressures than those used in conventional stamping operations, hence tools and machinery need to be designed with these higher operating pressures in mind.

The edges produced from fine blanking avoid fractures as produced with conventional tooling and surface flatness can exceed that of other stamping methods. Since it is a cold extrusion technique, fine blanking is a single-step process, reducing the overall costs of fabrication.

Deep Draw Stamping

Deep drawing involves pulling a sheet metal blank into the die via a punch, forming it into a shape. The method is referred to as &#;deep drawing&#; when the depth of the drawn part exceeds its diameter. This type of forming is ideal for creating components that need several series of diameters and is a cost-effective alternative to turning processes, which typically require using up more raw materials. Common applications and products made from deep drawing include:

  • Automotive components
  • Aircraft parts
  • Electronic relays
  • Utensils and cookware

Short Run Stamping

Short-run metal stamping requires minimal upfront tooling expenses and can be an ideal solution for prototypes or small projects. After the blank is created, manufacturers use a combination of custom tooling components and die inserts to bend, punch or drill the part. The custom forming operations and smaller run size can result in a higher per-piece charge, but the absence of tooling costs can make short-run more cost-efficient for many projects, especially those requiring fast turnaround.

 

Stamping Advantages and Disadvantages

Sheet metal stamping has several advantages including lower die costs, lower secondary costs, and a high level of automation compared to other processes. Metal stamping dies are less costly to make and maintain than dies used in other typical operations. Cleaning and plating are also less expensive than identical treatments for other metal manufacturing techniques. Stamping machines are generally simple to automate and may use sophisticated computer-control systems to give more precision, faster output, and shorter turnaround times. The high level of automation also reduces labor costs.

Recommended article:
Why Choose Spiral Bevel Gears?
Belleville Spring and It's Applications | by Adwait Gaikwad

yiyuan Product Page

One of the disadvantages of stamping is the higher cost of presses. The dies must also be acquired or created and producing custom metal stamping dies is a longer pre-production process. Dies can also be difficult to change if the design must be altered during production.

 

Precision Quality Stampings & Fabrication

We produce only the highest quality custom metal stampings. Our workforce is dedicated and committed to quality through Quality Circle involvement. Our products are high-quality and are certified to ISO : certified, AU, US, EU, or CA standards.

 

Sheet Metal Stamping Applications

Stamping parts are used in a variety of applications, especially those involving three-dimensional designs, lettering, or other surface engraving features. Such stamping products are commonly produced for home appliance manufacturers, automotive companies, the lighting industry, telecommunications services, military and defense, aerospace industries, medical equipment manufacturers, and electronics companies. Odds are you have a product in your home that has parts created through metal stamping because it is a process used in everything from your household appliances to your cars.

The specific products and components can range from simple stamping items, such as metal clips, springs, weights, washers, and brackets, to more complex designs, such as those found in engine bases or friction plates. This process is used for producing both parts for large machinery and also incredibly detailed small parts. Micro-precision stamping can create parts with diameters of up to 0.002 inches.

Electronic stampings are electronic components manufactured through the metal stamping process. They are used in a variety of industries, from home electronics and appliances to telecommunications and aerospace. Electronic stampings are available in several metals, including copper, copper alloys, aluminum, and steel, as well as more expensive metals, such as platinum and gold. Electronic components produced by the metal stamping method include terminals, contacts, lead frames, springs, and pins. They can be created from ferrous or nonferrous materials. Metal stampings find wide use in computers, electronic equipment, and medical devices. Because of the specialized shapes that can be made by the various stamping processes, many electronics are made by this cold forming process.

 

Design Concepts

Overly narrow projections should generally be avoided in stamped products, as these may be more easily distorted and impact the perception of quality in the finished product.

Where possible, designs should be based on the use of existing dies for standard shapes and bends. The need to create a custom die for stamping will increase initial tooling costs.

Avoidance of sharp internal and external corners in stamped product designs can help reduce the potential for the development of larger burrs in these areas and sharp edges that require secondary treatment to remove. Also, a great potential for stress concentrations exists in sharp corners, which may cause cracking or subsequent failure of the part through extended use.

Overall dimensions for the finished product are going to be limited by the available dimensions of the sheet metal sheets or blanks, and these limits need to be factored in for the material consumed in folds on edges or flanges and any additional material removal or use. Very large products may need to be created in multiple steps and mechanically joined together as a second step in the production process.

For punching operations, consider both the direction of punching as well as the size of the punched feature. Generally, it is best to do punching in one direction, so that any sharp edges produced by the punch will all be on the same side of the workpiece. These edges can then be hidden for appearance purposes and kept away from general access by workers or product end-users where they might represent a hazard. Punched features should reflect the thickness of the raw material. A general rule is that punched features should be at least twice the material thickness in size.

For bends, the minimum bend radius in sheet metal is roughly the same as the material thickness. Smaller bends are more difficult to achieve and may result in points of stress concentration in the finished part that may subsequently cause issues with product quality.

When drilling or punching holes, performing these operations in the same step will help to assure their positioning, tolerance, and repeatability. As general guidelines, hole diameters should be no smaller than the material thickness, and the minimum spacing of holes should be at least twice the material thickness apart from each other.

Bending operations should be performed with awareness of the risk of distorting the material, as the material on the interior and exterior surfaces of the bend point are compressed and stretched respectively. The minimum bend radius should be approximately equal to the thickness of the workpiece, again to avoid stress concentration build-up. Flange lengths should be more like three times the workpiece thickness as a good practice.

 

Contact us for Precision Sheet Metal Stampings and More

Are you searching for a reliable precision sheet metal stampings manufacturer at a reasonable cost? Look no further than AM Industries Vietnam. Request a quote on your custom sheet metal stamping project or contact us to find out what we can do for you.

 

Source: www.thomasnet.com

Custom Metal Stamping | A Comprehensive Guide

Custom metal stamping is, by definition, designed exclusively for a specific part and its functions. Unlike mass-produced stampings, custom metal stamping is chosen when precision and complex dimensions are required to produce a unique part. This process requires the upfront development of a custom metal stamping tool that cuts and forms the part as the metal goes through the stamping press. Custom metal stampings can range from large components for automobiles and custom assemblies to micro-miniature parts for medical devices or electronics.

Techniques for Shaping Custom Metal Stampings

Stamping includes a variety of sheet metal forming processes consisting of either a single station operation where every stroke of the press produces the desired form of the metal part or could occur through a series of stages. The following techniques are used to achieve the desired shape in the press.

Bending

Bending creates a formed feature by angular displacement of a sheet metal workpiece. In some processes, one edge of the workpiece is clamped in a stationary position while the other edge is clamped by a metal tool and bent over a form to create a precise bend or shape. Alternatively, the metal piece may be pushed into or against a form.

Blanking

The blanking process removes a metal piece from the primary metal strip or sheet when it is punched through the strip/sheet. The material that is removed becomes the new metal workpiece or blank.

Coining

Coining is a forming process that uses an extreme amount of pressure to push the workpiece into a die. The die then forms the metal into a precise shape and creates permanent forms in the workpiece. Coining also smooths the edges of metal parts by striking them with a high degree of force. This removes existing burrs and hardens the metal. Coining may reduce the need for deburring, grinding, and other secondary processes at the end of the project, which saves both time and money.

Crash/Crush Forming

This process deforms the metal using only a punch and cavity. These dies do not control metal flow and cannot prevent the metal from wrinkling or buckling. They are used to form simple parts, such as brackets and braces, made from thick, stiff metals that are more wrinkle-resistant than thinner metals.

Cutting

One of the most common stamping operations, cutting trims the metal into a part by the use of extremely high force in the stamping press. Cutting operations include trimming, notching, piercing, blanking, lancing, and shearing.

Drawing

A complex drawing die is used to create large metal parts, such as automotive components. The process involves controlling the flow of metal into a cavity via a pressure-loaded draw pad to prevent wrinkling as the material flows over a forming punch.

Embossing

Embossing is a cold-forming process used for creating specific formations or designs on metal pieces. Male and female embossing components press a workpiece between them with sufficient force to form the three-dimensional feature.

Extruding

Extrusion forms the metal inside the diameter of a pierced hole, which may be used for applications such as holding fasteners during part assemblies.

Flanging

The flanging operation bends metal along a curved axis, which may be used to form a projection or the rim of a part as it relates to part assembly and stiffness requirements.

Forming

Metal stamping involves a variety of forming operations. The stamping press forms the metal material by applying tension, compression, or both. The specific type of forming operation selected depends on the material&#;s properties and the part&#;s critical dimensions, balancing formability and strength.

Ironing

Similar to the coining process, ironing employs compression to form the part by squeezing the metal along a vertical wall to achieve exact thickness and length dimensions.

Lancing

In order to free up metal without separating it from the metal strip, lancing slices or slits the metal, which may be used in progressive dies as a part carrier.

Piercing

This metal cutting operation, also called perforating, produces a hole in a formed part or sheet metal, which may be round, square or a custom shape. The slug is then discarded.

Pinch Trimming

Pinch trimming is a special method in which the vertical walls of a drawn or stretched vessel are cut by pinching the metal.

Punching

This forming process uses a punch press to force a tool, called a punch, through the workpiece/material to create a hole and produces a scrap slug that is deposited into the die below the sheet metal.

Restriking/Sizing

Used primarily after major forming operations are complete, restriking employs an additional station in the die to finish precision details such as small embossing and sharp radii.

Shaving

An operation used to eliminate or minimize die-break, while maximizing the amount of sheared edge.  The general concept with shaving is to pre-punch the hole slightly smaller, then post-punch the hole to size, using a very tight die clearance. This can also be done on a straight or outside edge.

Shearing

Cutting force is applied perpendicular to the material, causing the material to yield and break.

Trimming

The trimming process achieves the specified profile of a stamped part by forming its perimeter or cutting away excess metal, with precision trimming designed to minimize scrap.

Custom Metal Stamping Production Methods

The method chosen for metal stamping production takes into account the complexity of the part and how metal stamping can best form that part. For precision parts with tight tolerances, the method may include the use of in-die sensors to continually monitor part quality, along with other inspection methods. The method also takes into account secondary operations, such as plating, heat treating, welding, and cleaning or sterilization.

Progressive Die Stamping

Progressive metal stamping is a stamping process that advances a metal strip from station to station performing different operations on the same part in the die until the part is complete. Conical-shaped pilots are inserted into pre-pierced holes in the strip to ensure the precision of the alignment as the part advances to guarantee the accuracy of the finished product. Since the part is attached to a metal strip throughout its formation, the entire process and parts will be out of tolerance if the strip is off by even a tiny fraction of an inch.

Progressive die stamping offers some advantages such as being a highly repeatable process and since the material is continuously fed into the stamping press, long production runs can be completed, producing more finished parts in less time resulting in lower cost per part.

Progressive Stamping Delivers High Speed Production and Lower Costs.

Transfer die stamping

Transfer die stamping uses one press to operate multiple tools. The part is removed from its metal strip so that it can be freely transferred.  A part, which can be turned or rotated, is shaped by each station until it is complete. Automation of the transfer process streamlines the operation into a single press.

Transfer dies can handle many part features in one press pass, such as holes, cut-outs or threading, which can eliminate costly secondary operations.

Transfer die stamping is typically used for large parts like frames, tube applications, draws, shells, and structural components.

Is Progressive Die Stamping or Transfer Die Stamping Best for Your Next Precision Metal Stamping Project?

Deep Drawing

Beneficial for applications requiring recessed cavities, where the depth of the drawn part exceeds its diameter, deep drawing uses blanking, swaging or sizing to deform the base material and apply recessed features.

Fine Blanking

Fine blanking is optimal for parts that require very smooth, precise edges or exceptional flatness. Fine blanking is particularly suitable for moving parts such as gears. Fine blanking is a combination of metal stamping and cold-metal extrusion techniques, requiring special presses. 

Progressive Stamping vs. Fine Blanking: Three questions OEMs Should Ask

Multi-slide / Four-slide Stamping

Multi-slide / Four-slide stamping is best suited for fabricating complex components that have numerous bends or twists and for forming wire. The difference between multi-slide and four-slide is that four-slide metal stamping machines have four moving slides while multi-slide machines have more than four slides. The slides or rams in the machines strike the material to produce the finished parts.

Multi-slide / Four-slide equipment can manufacture complicated parts with multiple, complex, or over 90° bends and twists including clips, brackets, flat springs, terminals, retainers, and wire formed parts. Both flat and round materials can be formed.

Are you interested in learning more about metal stamping clips? Contact us today to secure an expert consultation!

L E A R N    M O R E 

Comments

0

0/2000